

AEGIS® iPRO Bearing Protection Ring

High Current Bearing Protection

- Medium Voltage Motors
- Large Motors and Generators over 750kW
- Power Generators over 750kW

Large motors and generators often have much higher induced shaft voltages and bearing currents which require a high current capable Bearing Protection Ring. High frequency circulating currents induced by variable frequency drives (VFD) will cause bearing fluting and catastrophic failure in these motors. Generators experience current surges which can cause electrical arcing in bearings and equipment.

Features:

- 6 rows conductive microfiber
- High current capable
- AEGIS® iPRO shaft current monitoring compatible
- Long term reliable performance
- Available in sizes up to 30" (762mm) shaft diameter

Application:

- One end of the motor should be insulated. Install AEGIS® iPRO on opposite end of insulation to protect the non-insulated bearing.
- Coat shaft with AEGIS® Colloidal Silver Shaft Coating (ships with iPRO)

Purpose of Application Notes: Application notes are intended as general guidance to assist with proper application. All statements and technical information are rendered in good faith. User must assume responsibility to determine suitability of the product for its intended use.

Bearing Protection Facts:

Bearing protection for motors and attached equipment:

Only AEGIS® SGR will protect both motor bearings and the bearings in attached equipment. VFD induced currents on the shaft can discharge through motor bearings or coupled equipment like gear boxes, pumps, fan bearings, pillow blocks, encoders, brake motors, etc. AEGIS® SGR addresses the root of the problem and channels harmful currents to ground.

Maintenance free bearing protection for life:

Hundreds of thousands of conductive micro fibers have virtually zero wear during operation, even at high RPM and high surface rates. Unlike carbon block brushes, there is no spring pressure on fibers. AEGIS® SGR Bearing Protection Ring will last for the service life of the motor.

AEGIS® SGR is effective in grease, oil, dirt or dust:

Lab and field tested. The conductive micro fibers "sweep" away contaminants from the shaft surface and maintain a conductive path even when oil, grease, dirt or dust get on the shaft.

Operation in harsh environments where fibers are exposed to excessive debris:

To prevent particles from damaging the fibers, install a slinger or O-ring against the AEGIS® SGR.

Colloidal Silver Shaft Coating*:

NEW TECHNOLOGY

Improving the conductivity of the steel shaft surface enhances the shaft voltage discharge capability in AEGIS® shaft grounding applications. Maintaining a highly conductive shaft surface is especially important in critical applications or in applications where the conductive shaft surface of steel could become compromised. Environmental elements could create a potential for decreased conductivity on the shaft of the motor.

*Recommended for all AEGIS® SGR installations.

AEGIS® SGR Bearing Protection Ring current handling capability:

AEGIS® SGR is rated to discharge high frequency current. Variable frequency drives (VFD) induce high frequency EDM currents of up to 2 amps in 50 billionths of a second. AEGIS® SGR protects the bearing by safely channelling the energy away from the motor bearings to ground.

AEGIS® Bearing Protection Ring - the most reliable bearing protection:

Production up-time and reliability improve when AEGIS® SGR is installed. The patented ring of hundreds of thousands of conductive micro fibres provide protection for the service life of the motor. The fibres will always surround the shaft with a conductive path for destructive shaft currents while the motor is running.

Vertical Motors:

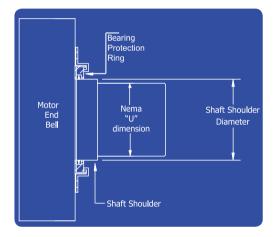
Insulate top bearing or shaft with non conductive coating. For bottom bearing, coat shaft with Colloidal Silver Shaft Coating and install AEGIS® Bearing Protection Ring.

Motors with Ceramic Bearings

Insulating both bearing journals or using ceramic coated bearings in the motor does not prevent VFD induced currents from discharging through the bearings on attached equipment and may present a voltage hazard.

Whenever ceramic bearings are used in a motor, AEGIS® SGR is required to protect attached equipment and reduce potentially dangerous shaft voltages.

Selecting the right size Bearing Protection Ring for your motor


Mounting Options shown on page 8

- 1. Measure shaft diameter at a point 3mm from motor end bell.
- 2. Refer to the part lists to locate the correct SGR part number.

Note: If you have a slinger or a shaft shoulder that is less than 9.5mm, you will need the IEC kit. See page 13 for more information.

Example shaft	measurement l	0.8mm*			
Catalogue Number	Min. Shaft Diameter	Max. Shaft Diameter	Outside Diameter	Thickness Max.	
SGR-6.9-2	7.9	9.0	40.6	7.5	
SGR-8.0-2	9.0	10.0	40.6	7.5	
SGR-9.0-2	10.1	*11.0	40.6	7.5	
SGR-10.1-2	11.1	12.2	40.6	7.5	
SGR-11.2-2	12.2	13.2	40.6	7.5	

Shaft Shoulder:

The standard SGR can be mounted to the shaft shoulder but the shoulder should be at least 9.5mm in length so that all of the fibers are in contact with the rotating shaft. Measure the diameter of the shaft shoulder then locate the correct SGR on the part lists.

Custom Option for Short Shaft Shoulders:

If the shaft shoulder is between 4.7mm and 9.5mm we offer a custom part. For this option, we place the fibers closer to the back of the ring to allow for fiber contact on a shorter shoulder. To order this option, add an "X" or "AX" to the suffix of the part.

Example:

Standard SGR	Short Shoulder SGR
PN: SGR-6.9-0A4W	PN: SGR-6.9-0A4WX
PN: SGR-6.9-0AW	PN: SGR-6.9-0AWX
PN: SGR-6.9-2	PN: SGR-6.9-2AX
PN: SGR-6.9-2A4	PN: SGR-6.9-2A4X
PN: SGR-6.9-3	PN: SGR-6.9-3AX

AEGIS® SGR - Press Fit Mounting

Dimensions in mm

Catalog Number	Min.shaft diameter	Max.shaft diameter	SGR OD Tolerance	Thickness Max	Bore Tolerance	Catalog Number	Min.shaft diameter	Max.shaft diameter	SGR OD Tolerance	Thickness
			+0/-0.025		+0.025/-0				+0/-0.025	
GR-6.9-0A6	7.9	9.0	40.132	7.5	40.030	SGR-79.9-0A6	81.0	82.0	103.632	7.5
GR-8.0-0A6	9.1	10.0	40.132	7.5	40.030	SGR-81.1-0A6	82.1	83.1	103.632	7.5
R-9.0-0A6	10.1	11.0	40.132	7.5	40.030	SGR-82.1-0A6	83.2	84.1	103.632	7.5
GR-10.1-0A6 GR-11.2-0A6	11.1	12.2	40.132 40.132	7.5 7.5	40.030 40.030	SGR-83.1-0A6 SGR-84.2-0A6	84.2 85.3	85.2 86.2	103.632 103.632	7.5 7.5
R-11.2-0A6 R-12.2-0A6	13.3	14.2	40.132	7.5 7.5	40.030	SGR-85.2-0A6	86.3	87.2	116.332	7.5
R-13.2-0A6	14.3	15.4	40.132	7.5	40.030	SGR-86.3-0A6	87.3	88.4	116.332	7.5
R-14.4-0A6	15.5	16.4	40.132	7.5	40.030	SGR-87.4-0A6	88.5	89.4	116.332	7.5
R-15.4-0A6	16.5	17.4	52.832	7.5	52.730	SGR-88.4-0A6	89.5	90.4	116.332	7.5
GR-16.4-0A6	17.5	18.5	52.832	7.5	52.730	SGR-89.4-0A6	90.5	91.6	116.332	7.5
R-17.6-0A6	18.6	19.7	52.832	7.5	52.730	SGR-90.6-0A6	91.7	92.6	116.332	7.5
GR-18.7-0A6	19.8	20.7	52.832	7.5	52.730	SGR-91.6-0A6	92.7	93.6	116.332	7.5
R-19.7-0A6	20.8	21.7	52.832	7.5	52.730	SGR-92.6-0A6	93.7	94.7	116.332	7.5
R-20.7-0A6	21.8	22.7	52.832	7.5	52.730	SGR-93.8-0A6	94.8	95.8	116.332	7.5
R-21.7-0A6	22.8	23.7	52.832	7.5	52.730	SGR-94.8-0A6	95.9	96.8	116.332	7.5
R-22.8-0A6	23.8	24.9	52.832	7.5	52.730	SGR-95.8-0A6	96.9	97.9	116.332	7.5
-23.9-0A6	25.0	25.9	52.832	7.5	52.730	SGR-96.9-0A6	98.0	98.9	116.332	7.5
R-24.9-0A6	26.0	26.9	52.832	7.5	52.730	SGR-97.9-0A6	99.0	99.9	129.032	7.5
-25.9-0A6	27.0	28.1	52.832	7.5	52.730	SGR-99.0-0A6	100.0	101.1	129.032	7.5
R-27.1-0A6	28.2	29.1	52.832	7.5	52.730	SGR-100.1-0A6	101.2	102.1	129.032	7.5
1-28.1-0A6	29.2	30.1	52.832	7.5	52.730	SGR-101.1-0A6	102.2	103.1	129.032	7.5
1-29.1-0A6	30.2	31.2	52.832	7.5 7.5	52.730	SGR-102.1-0A6	103.2	104.3	129.032	7.5 7.5
l-30.3-0A6	31.3	32.3	52.832		52.730 52.730	SGR-103.3-0A6	104.4	105.3	129.032	
-31.3-0A6 -32.3-0A6	32.4 33.4	33.3 34.4	52.832 52.832	7.5 7.5	52.730 52.730	SGR-104.3-0A6 SGR-105.3-0A6	105.4	106.3 107.4	129.032 129.032	7.5 7.5
-32.3-0A6	34.5	35.4	52.832	7.5 7.5	52.730	SGR-105.5-0A6	106.4	107.4	129.032	7.5
-34.4-0A6	35.5	36.4	67.564	7.5 7.5	67.462	SGR-106.5-0A6	107.5	108.5	129.032	7.5
-35.5-0A6	36.5	37.6	67.564	7.5	67.462	SGR-108.5-0A6	109.6	110.6	129.032	7.5
R-36.6-0A6	37.7	38.6	67.564	7.5	67.462	SGR-109.6-0A6	110.7	111.6	129.032	7.5
-37.6-0A6	38.7	39.6	67.564	7.5	67.462	SGR-110.6-0A6	111.7	112.6	141.732	7.5
-38.6-0A6	39.7	40.8	67.564	7.5	67.462	SGR-111.7-0A6	112.7	113.8	141.732	7.5
-39.8-0A6	40.9	41.8	67.564	7.5	67.462	SGR-112.8-0A6	113.9	114.8	141.732	7.5
R-40.8-0A6	41.9	42.8	67.564	7.5	67.462	SGR-113.8-0A6	114.9	115.8	141.732	7.5
-41.8-0A6	42.9	43.9	67.564	7.5	67.462	SGR-114.8-0A6	115.9	117.0	141.732	7.5
R-43.0-0A6	44.0	45.0	67.564	7.5	67.462	SGR-116.0-0A6	117.1	118.0	141.732	7.5
R-44.0-0A6	45.1	46.0	67.564	7.5	67.462	SGR-117.0-0A6	118.1	119.0	141.732	7.5
R-45.0-0A6	46.1	47. I	67.564	7.5	67.462	SGR-118.0-0A6	119.1	120.1	141.732	7.5
R-46.1-0A6	47.2	48. I	67.564	7.5	67.462	SGR-119.2-0A6	120.2	121.2	141.732	7.5
R-47.1-0A6	48.2	49.1	67.564	7.5	67.462	SGR-120.2-0A6	121.3	122.2	141.732	7.5
R-48.2-0A6	49.2	50.3	67.564	7.5	67.462	SGR-121.2-0A6	122.3	123.3	141.732	7.5
R-49.3-0A6	50.4	51.3	67.564	7.5	67.462	SGR-122.3-0A6	123.4	124.3	141.732	7.5
R-50.3-0A6	51.4	52.3	78.232	7.5	78.130	SGR-123.3-0A6	124.4	125.3	154.432	7.5
R-51.3-0A6	52.4	53.5	78.232	7.5	78.130	SGR-124.4-0A6	125.4	126.5	154.432	7.5
R-52.5-0A6	53.6	54.5	78.232	7.5	78.130	SGR-125.5-0A6	126.6	127.5	154.432	7.5
R-53.5-0A6	54.6	55.5	78.232	7.5	78.130	SGR-126.5-0A6	127.6	128.5	154.432	7.5
R-54.5-0A6	55.6	56.6	78.232	7.5	78.130	SGR-127.5-0A6	128.6	129.7	154.432	7.5
R-55.7-0A6 R-56.7-0A6	56.7 57.8	57.7 59.7	78.232	7.5 7.5	78.130 78.130	SGR-128.7-0A6	129.8	130.7	154.432	7.5
R-56.7-0A6 R-57.7-0A6	57.8 58.8	58.7 59.8	78.232 78.232	7.5 7.5	78.130	SGR-129.7-0A6 SGR-130.7-0A6	130.8 131.8	131.7 132.8	154.432 154.432	7.5 7.5
-57.7-0A6 -58.8-0A6	58.8	60.8	78.232	7.5 7.5	78.130	SGR-131.9-0A6	131.8	132.8	154.432	7.5
R-59.8-0A6	60.9	61.8	90.932	7.5 7.5	90.830	SGR-131.9-0A6	134.0	133.9	154.432	7.5
1-60.9-0A6	61.9	63.0	90.932	7.5	90.830	SGR-133.9-0A6	135.0	136.0	154.432	7.5
-62.0-0A6	63.1	64.0	90.932	7.5	90.830	SGR-135.0-0A6	136.1	137.0	154.432	7.5
-63.0-0A6	64.1	65.0	90.932	7.5	90.830	SGR-136.0-0A6	137.1	138.0	167.132	7.5
-64.0-0A6	65.1	66.2	90.932	7.5	90.830	SGR-137.1-0A6	138.1	139.2	167.132	7.5
-65.2-0A6	66.3	67.2	90.932	7.5	90.830	SGR-138.2-0A6	139.3	140.2	167.132	7.5
66.2-0A6	67.3	68.2	90.932	7.5	90.830	SGR-139.2-0A6	140.3	141.2	167.132	7.5
-67.2-0A6	68.3	69.3	90.932	7.5	90.830	SGR-140.2-0A6	141.3	142.4	167.132	7.5
-68.4-0A6	69.4	70.4	90.932	7.5	90.830	SGR-141.4-0A6	142.5	143.4	167.132	7.5
k-69.4-0A6	70.5	71.4	90.932	7.5	90.830	SGR-142.4-0A6	143.5	144.4	167.132	7.5
R-70.4-0A6	71.5	72.5	90.932	7.5	90.830	SGR-143.4-0A6	144.5	145.5	167.132	7.5
R-71.5-0A6	72.6	73.5	90.932	7.5	90.830	SGR-144.6-0A6	145.6	146.6	167.132	7.5
R-72.5-0A6	73.6	74.5	103.632	7.5	103.530	SGR-145.6-0A6	146.7	147.6	167.132	7.5
R-73.6-0A6	74.6	75.7	103.632	7.5	103.530	SGR-146.6-0A6	147.7	148.7	167.132	7.5
R-74.7-0A6	75.8	76.7	103.632	7.5	103.530	SGR-147.7-0A6	148.8	149.7	167.132	7.5
R-75.7-0A6	76.8	77.7	103.632	7.5	103.530	SGR-148.7-0A6	149.8	150.7	179.832	7.5
-76.7-0A6	77.8	78.9	103.632	7.5	103.530	SGR-149.8-0A6	150.8	151.9	179.832	7.5
-77.9-0A6	79.0	79.9	103.632	7.5	103.530	SGR-150.9-0A6	152.0	152.9	179.832	7.5

SGR-78.9-0A6

103.632

103.530