ST3000 Ace Smart Transmitter JTD Series of Differential Pressure Transmitters

ModelJTD910A/920A/930A/960A/921A/931A/961A

OVERVIEW

The ST3000 Ace Smart Transmitter is a microprocessor-based smart transmitter that features high performance and excellent stability. Capable of measuring gas, liquid, and vapor flow rates, pressures, and liquid levels, it transmits 4 to 20 mA DC analog and digital signals according to the measured differential pressure.

It can also execute two-way communications between the Smart communicator and via DE protocol with the TDCS3000 or 3000^X, or Advanced-PS, and a database, thus facilitating self-diagnosis, range resetting, and automatic zero adjustment.

Refer to No. SS2-DST10F-0100 for FOUNDATIONTM Fieldbus specification.

FEATURES

Excellent stability and high performance

- Long-term stability has been proven in 2,000,000 installations worldwide.
- Unique characterization and composite semiconductor sensors realize excellent temperature and static pressure characteristics.

Wide measuring range (rangeability)

• A wide measuring range is available from a single model. This feature is highly effective in taking measurements over a wide range and reducing the need for reserve units. The measuring range of the model JTD920A, for example, is 0.75 to 100 kPa (range ability = 1: 135).

A diverse lineup

- A wide range of models is available to meet user requirements. They include micro-differential pressure, standard differential pressure, high differential pressure, standard differential pressure/high static pressure, and high differential pressure/high static pressure models.
- A wide variety of corrosion-resistant materials for wetted parts is also available.

Multi protocol communication

• Either analog output (4 to 20 mA DC, SFN protocol, HART® protocol) or digital output

(DE protocol, FOUNDATIONTM Fieldbus protocol) is possible.

• Two-way communication using SFN, HART, or Foundation Fieldbus facilitates self-diagnosis, range resetting, automatic zero adjustment, and so on.

Full after-sales service program

- A wide variety of specialized replacement kits is provided to meet customers' needs when replacing Azbil Corporation's transmitters or transmitters from other companies.
- From product delivery to replacement, we will service all your needs. Our nationwide service network provides all the backup you require, including trial operation support and regular maintenance.

China RoHS

This device is used in the Oil & Gas, Petrochemical, Chemical, Pulp & Paper, Food & Beverage, Machinery, Steel/Metal & Mining, and Automobile industries and therefore does not fall under the China RoHS Legislation.

If this device is used in semiconductor manufacturing equipment, labeling on the device and documents for the China RoHS may be required. If such documents are required, consult an Azbil Corp. representative.

HART® is a registered trademark of the HART Communication Foundation.

APPLICATION

Petroleum / Petrochemical / Chemical

- For strict flow control in combination with orifice plates
- For measuring pressures and liquid levels in pipes and tanks

Electric power / City gas / Other utilities

• For measurement applications that require high degrees of stability and accuracy

Draft range applications such as semiconductor equipment manufacturing / Clean rooms

For applications that require highly stable, accurate measurement

Pulp and paper

• For lines that need transmitters resistant to chemical liquids, corrosive fluids and the like

Iron and steel / Nonferrous metal / Ceramics

- For highly stable, accurate measurements such as furnace pressure measurement
- For lines that require stable measurement under strictly controlled (temperature, humidity, etc.) conditions

Machinery / Shipbuilding

• For lines that require stable measurement under strictly controlled (temperature, humidity, etc.) conditions

SPECIFICATIONS

Measuring span / Setting range / Working pressure range

See Table 1.

Output

Analog output (4 to 20 mA DC) Digital output (DE protocol)

Digital output (FOUNDATIONTM Fieldbus protocol)

Communication

SFN communication

HART® communication

FOUNDATIONTM Fieldbus communication

Supply voltage and load resistance

10.8 to 45V DC.

9 to 32 VDC (FOUNDATIONTM Fieldbus communication).

A load resistance of 250 Ω or more is necessary between loops. (See Figure 1)

Fill Fluid

Silicone oil for general purpose models Fluorine oil for oxygen and chlorine models

Ambient temperature range

Normal operating range

- -40 to 85°C for general purpose models
- -15 to 65°C for general purpose model (JTD910A)
- -15 to 85°C for general purpose model (JTD921A / 931A / 961A)
- -10 to 75°C for oxygen and chlorine models
- -20 to 70°C for models with digital indicators

Operative limits

- -50 to 93°C for general purpose models
- -40 to 70°C for general purpose model (JTD910A)
- -25 to 93°C for general purpose model (JTD921A / 931A / 961A)
- -40 to 80°C for oxygen and chlorine models
- -30 to 80°C for models with digital indicators

TIIS flameproof models: -20 to 60°C TIIS intrinsically safe models: -10 to 60°C KOSHA flameproof models: -20 to 60°C

Temperature ranges of wetted parts

Normal operating range

- -40 to 110°C for general purpose models
- -15 to 65°C for general purpose model (JTD910A)
- -15 to 110°C for general purpose model (JTD921A / 931A / 961A)
- -10 to 75°C for oxygen and chlorine models
- -10 to 65°C for oxygen and chlorine models (JTD910A)

Operative limits:

- -50 to 115°C for general purpose models
- -40 to 70°C for general purpose model (JTD910A)
- -15 to 115°C for general purpose model (JTD921A / 931A / 961A)
- -40 to 80°C for oxygen and chlorine models
- -40 to 70°C for oxygen and chlorine models (JTD910A)

TIIS flameproof models: -20 to 110°C

(JTD910A: -15 to 65°C)

(JTD921A / 931A / 961A: -15 to 110°C)

TIIS intrinsically safe models: -20 to 100°C

(JTD910A: -10 to 65°C)

(JTD921A / 931A / 961A: -15 to 100°C)

KOSHA flameproof models: -20 to 110°C

(JTD910A: -15 to 65°C)

(JTD921A / 931A / 961A: -15 to 110°C)

Ambient humidity range

5 to 100% RH

Stability against supply voltage change

 \pm 0.005% F.S./V

Lightning protection

Peak value of voltage surge: 100 kV Peak value of current surge: 1000A

Dead time

Approximately 250 m sec.

Damping time constant

Selectable from 0 to 32 sec. in ten stages

Waterproof / Dustproof structure

JIS C0920 watertight: NEMA3 and 4X JIS F8001 class 2 watertight: IEC IP67

Explosion-proof structure

TIIS flameproof models: (Ex d II C T4X)

Note) Please use the cable that can be used in the environment that maximum ambient temperature is beyond 65°C

TIIS intrinsically safe models: (Ex ia II C T4)

Vi=30 V, Ii=100 mA Pi=1W, Ci=10 nF Li=0.5 mH

KOSHA flameproof models: (Ex d II C T4)

Vibration effect

Amptitude 1.5mm / Frequency 0 to 9Hz $5\text{m/s}^2(0.5\text{G})$ / 9 to 60Hz

Impact effect

 $10 \text{m/s}^2 (1 \text{G})$

Table 1 Measuring span, setting range, and working pressure range

(for negative pressure in the working pressure range, see Figure 2, Figure 3, Figure 4 and Figure 5.)

Model	Measuring span	Setting range	Working pressure range
JTD910A	0.1 to 2 kPa {10 to 200 mmH ₂ O}	-1 to 1 kPa {-100 to 100 mmH ₂ O}	-70 to 210 kPaG {-0.7 to 2.1 kgf/cm ² }
JTD920A	0.75 to 100 kPa {75 to 10160 mm H ₂ O}	-100 to 100 kPa {-10160 to 10160 mmH ₂ O}	2.0 kPa abs. to 14 MPa *1 *2
JTD930A	35 to 700 kPa {0.35 to 7 kgf/cm²}	-100 to 700 kPa {-1 to 7 kgf/cm²}	{15 mmHg abs. to 140 kgf/cm ² }
JTD960A	0.25 to 14 MPa {2.5 to 140 kgf/cm²}	-0.1 to 14 MPa {-1 to 140 kgf/cm²}	2.0 kPa abs. to 14 MPa *2 {15 mmHg abs. to 140 kgf/cm ² }
JTD921A	2.5 to 100 kPa {250 to 10160 mmH ₂ O}	-100 to 100 kPa {-10160 to 10160 mmH ₂ O}	
JTD931A	35 to 700 kPa {0.35 to 7 kgf/cm²}	-100 to 700 kPa {-1 to 7 kgf/cm²}	2.0 kPa abs. to 42 Mpa *3 {15 mmHg abs. to 420 kg/cm²}
JTD961A	0.25 to 14 MPa {2.5 to 140 kgf/cm ² }	-0.1 to 14 MPa {-1 to 140 kgf/cm ² }	

Note) *1: With PVC wetted parts, the maximum working pressure is 1.5 MPa {15 kgf/cm²} *2: With 304 SST bolts and nuts, the maximum working pressure is 10 MPa {100 kgf/cm²} *3: With 304 SST bolts and nuts, the

*3: With 304 SST bolts and nuts, the maximum working pressure is 23 MPa {230 kgf/cm²}

*4: JTD910A is high sensitivity. So that shall not be receiving the mounting position of the radiant heat of the wind effect.

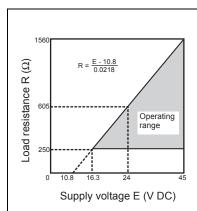


Figure 1 Supply voltage vs. load resistance characteristics

Note) For communication with Communicator, a load resistance of 250 Ω or more is necessary

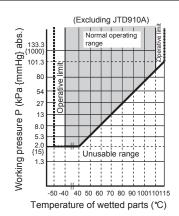


Figure 2 Working pressure and temperature of wetted parts section

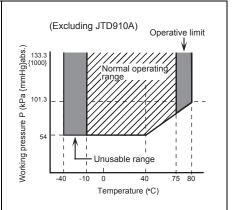


Figure 3 Working pressure and temperature of wetted parts section for oxygen and chlorine service

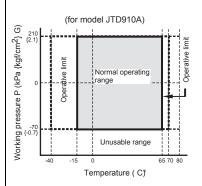


Figure 4 Working pressure and temperature of wetted parts section

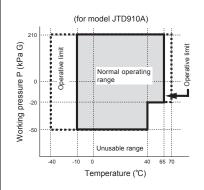


Figure 5 Working pressure and temperature of wetted parts section for oxygen and chlorine service

Process pipe connection

Rc1/2, 1/2NPT internal thread and Rc1/4, 1/4NPT internal thread

Electrical conduit connection

G1/2 internal thread and 1/2NPT internal thread

Materials

Center body: 316 SST

Transmitter case: Aluminum alloy

Wetted parts materials

Meter body cover

SCS14A(316 SST),SUSF316, PVC

Wetted parts of center body

316 SST (Diaphragm: 316L SST),

ASTM B575 (Hastelloy C-276 equivalent),

tantalum, etc.

Vents and plugs

316 SST, PVC

Gaskets for wetted parts

FEP (Teflon)

Bolts and nuts material (for fastening meter body cover)

Carbon steel (SNB7), 304 SST, 630 SST

Finish

Housing: light beige (Munsell 4Y7.2/1.3) Cap: dark beige (Munsell 10YR4.7/0.5)

Corrosion-resistant finish

Standard

Corrosion-resistant paint (Baked acrylic paint)

Corrosion-resistant finish

Corrosion-resistant paint (Baked acrylic paint), fungus-proof finish

Corrosion-proof finish

Corrosion-proof paint (Baked epoxy paint), fungusproof finish

Corrosion-resistant finish (silver paint)

Transmitter case is silver-coated in addition to the above corrosion-resistant finish.

Built-in indicating meter

The digital LCD indicator (optional) indicates actual flow rates (in SI units) and can be set freely between -19999 and 19999 (4.5 digits). For actual calibration, specify the following items when placing your order:

- Actual calibration range
- Actual calibration unit

• Proportional representation and instructions about square-root extraction

Various kinds of data can be set using the SFC smart communicator (Ver. 7.1 or later).

Burnout feature

Choice of three states at abnormal condition:

Burnout of output values: none upper limit: 20.8mA (105%) or more lower limit: 3.8mA (-1.25%) or less

Grounding

Grounding resistance 100Ω max.

Installation

Can be installed on a 2-inch horizontal or vertical pipe (can be directly mounted on a process pipe)

Weight

Approx. 4.4 kg (Model JTD920A)

OPTIONAL SPECIFICATIONS

Adaptors for anticorrosion materials

These are adaptor flanges to connect 82 mm pipes made of anticorrosion materials (excluding ASTM B575 (Hastelloy C-276 equivalent)) to 54 mm general-purpose pipes.

External zero adjustment function

The transmitter can be easily zero-adjusted in the field with a flat-blade screwdriver.

Additional lightning protection

It is possible to achieve a lightning protection performance of 200 kV, 2000 A, twice the standard performance (100 kV, 1000 A). This is advisable when the transmitter is to be used in lightning-prone areas such as mountains, hills or wherever high-performance lightning protection is required.

Long vent drain

A longer (58 mm) drain than the standard (24 mm) can be used for maintenance, process, and safety reasons.

Elbow

This is an adaptor for changing the electrical conduit connection port from the horizontal to the vertical direction, if required by wiring conditions in the field. One or two elbows may be used as needed.

Water free treatment (including oil free treatment)

The transmitter is shipped with dry and oil-free wetted parts. (The vents and plugs are coated with a small amount of fluorine oil to prevent galling)

Water free treatment (including oil free treatment) High Grade

No. SS2-DST100-0100

The transmitter is shipped with dry and oil-free wetted parts (including vents and plugs).

Oil free treatment

The transmitter is shipped with oil-free wetted parts. (The vents and plugs are coated with a small amount of fluorine oil to prevent galling)

Electric power specification

This specification applies to where stringent quality control is required, such as in the electrical power and city gas industries.

Special burnout (3.2 mA)

The burnout output value (in the lower-limit direction) under abnormal conditions shall be 3.2 mA (-5%) or less.

Output saturation

The output saturation point can be set within the following ranges.

12 mA(50%) \leq output upper limit \leq 20.8 mA(105%) 3.2 mA(-5%) \leq output lower limit \leq 12 mA(50%)

Note) As HART communication type,

- 1. In case code J8 "Special burnout (3.2mA)" of Options 2 is selected, the lower limit of output saturation becomes 3.2 mA(-5%).
- 2. In case code J8 "Special burnout (3.2mA)" of Options 2 is not selected, the lower limit of output saturation becomes 3.8 mA(-1.25%).

Test report

The test report indicates the results of appearance, I/O characteristics, insulation resistance, and breakdown voltage tests.

Material certificate

The material certificate shows the chemical composition, heat-treatment conditions, and mechanical properties of the materials used for the wetted parts. The transmitter can be easily zero-adjusted in the field with a flat-blade screwdriver.

Strength calculation sheet

The strength calculation sheet indicates the strength of the meter body cover, flanges, bolts, etc.

Withstand pressure and air tight test (for general purposes)

The withstand pressure and air tight test result sheet shows the results of a pressure resistance test (under water pressure for 10 minutes) and a gas-tightness test (using N_2 gas for 10 minutes) performed on the wetted parts.

Traceability certificate

This certificate consists of three parts: the transmitter's measurement control system configuration diagram, a calibration certificate, and a test report.

Conformance to non-SI units

We deliver transmitters set to any non-SI unit you specify.

Transmitter handling notes

To get the most from the performance this transmitter can offer, please use it properly noting the points mentioned below. Before using it, please read the Instruction Manual.

Transmitter installation notes

⚠ WARNING

- When installing the transmitter, ensure that gaskets do not protrude from connecting points into the process (such as adapter flange connection points and connecting pipes and flanges). Failure to do so may cause a leak of process fluid, resulting in harm from burns, etc. In addition, if the process fluid contains toxic substances, take safety measures such as wearing goggles and a mask to prevent contact with the skin and eyes and to prevent inhalation.
- Use the transmitter within the operating ranges stated in the specifications (for explosion-proofing, pressure rating, temperature, humidity, voltage, vibration, shock, mounting direction, atmosphere, etc.). Using the transmitter outside the operating conditions may cause device failure or fire, resulting in a harmful physical risk of burning or the like.
- Some models of the transmitter have a mass of 10 kg or more because of differences in specifications. For your safety when transporting or installing the transmitter, use a dolly or two or more people. Carelessly lifting the transmitter and accidentally dropping it can cause injury or damage.
- When performing wiring work in explosion-proof areas, follow the work method specified in the explosion-proof guidelines. In addition, when the wiring for an explosionproof product is a pull-in pressure-resistant packing cable, be sure to use a <u>pressure-resistant packing-cable adapter certified</u> by Azbil Corporation.
- Be sure to use the cable which allowable temperature is more than 65°C.

△ CAUTION

- After installation, do not use the transmitter as a foothold or put your weight on it. Doing so may cause damage.
- Be careful not to hit the glass indicator with tools etc. This could break the glass and cause injury.
- Impact to transmitter can damage sensor module.

Wiring notes

⚠ WARNING

• To avoid shocks, do not perform electrical wiring work with wet hands or with live wires.

- Do wiring work properly in conformance with the specifications. Wiring mistakes may result in malfunction or irreparable damage to the instrument.
- Use a power supply that conforms to the specifications. Use of an improper power supply may result in malfunction or irreparable damage to the instrument.
- Use a power supply with overcurrent protection for this instrument.

Handling precautions for HART specification devices

- If you need to operate with a secondary host (HART communicator, etc.), set the communication interval of the primary host (DCS, device management system) to 8 seconds or more, or suspend communication from the primary host. If the primary host repeats HART communication within 8 seconds, the request from the secondary host may not be received (communication may not be possible).
- If electrical noise in the environment prevents HART-communications with the host, take countermeasures such as separating the signal cables from the source of the noise, improving the grounding, changing to shielded signal cables, etc. Even if noise interferes with HART communications, the 4-20 mA analog signal will be unaffected and can be used for control.
- If this product is being operated in multidrop mode, there is a limit to the number of devices that can be used. If you are using multidrop mode, please consult with us.

PERFORMANCE

Shown for each performance (accuracy/ temperature characteristics/ static pressure effect) are absolute value of the upper limit $(URV)^{*1}$ and the lower limit $(LRV)^{*2}$ of the calibration range or the percentage ratio of the maximum value of the span to χ .

Model JTD910A (material for wetted parts: 316 SST)

Accuracy	Linear output:	$\pm \left(0.15 + 0.15 \times \frac{1.0}{\gamma}\right) \%$	(χ.kPa)
	Square-root output:	When output is 50 to 100%	same as linear output
		When output is 7.1 to 50%:	linear output $\times \frac{50}{square-root\ output}$ %
		When output is less than 7.1	1%: dropout
Temperature characteristics (Shift from the	Zero shift:	$\pm \left(0.15 + 0.35 \times \frac{1.0}{\gamma}\right) \%$	(x.kPa)
set range) Change of 30°C	Combined shift: (including zero and span shift)	$\pm \left(0.2 + 0.6 \times \frac{1.0}{\chi}\right) \%$	$(\chi . kPa)$
Static pressure effect	Zero shift:	± 0.45%	$(\chi \ge 1.0 \text{ kPa } \{100 \text{ mmH}_2O\})$
(Shift with respect to setting range)		$\pm \left(0.45 \times \frac{1.0}{\chi}\right) \%$	$(\chi < 1.0 \text{ kPa } \{100 \text{ mmH}_2O\})$
Change of 70 kPa {0.7	Combined shift:	± 0.5%	$(\chi \ge 1.0 \text{ kPa } \{100 \text{ mmH}_2O\})$
kgf/cm ² }	(including zero and span shift)	$\pm \left(0.5 \times \frac{1.0}{\chi}\right) \%$	$(\chi < 1.0 \text{ kPa } \{100 \text{ mmH}_2O\})$

Model JTD920A / 921A (material for wetted parts: 316 SST)

Accuracy *3	Linear output:	± 0.1%	$(\chi \ge 5.0 \text{ kPa } \{500 \text{ mmH}_2O\})$
		$\pm \left(0.025 + 0.075 \times \frac{5.0}{\gamma}\right) \%$	$(\chi < 5.0 \text{ kPa } \{500 \text{ mmH}_2O\})$
	Square-root output:	When output is 50 to 100%:	same as linear output
		When output is 7.1 to 50%:	linear output $\times \frac{50}{square-root\ output}\%$
		When output is less than 7.1	%: dropout
Temperature characteristics (Shift from the	Zero shift:	$\pm \left(0.14 + 0.17 \times \frac{12.5}{\gamma}\right)\%$	$(\chi : kPa)$
set range)*3	Combined shift:	$\pm 0.44\%$	$(\chi \ge 12.5 \text{ kPa } \{1250 \text{ mmH}_2O\})$
Change of 30°C	(including zero and span shift)	$\pm \left(0.19 + 0.25 \times \frac{12.5}{\chi}\right) \%$	$(\chi < 12.5 \text{ kPa } \{1250 \text{ mmH}_2O\})$
Static pressure effect	Zero shift:	±0.18 %	$(\chi \ge 20.0 \text{ kPa } \{2000 \text{ mmH}_2O\})$
(Shift with respect to setting range)*3 Change of 7 MPa {70 kgf/cm ² }		$\pm \left(0.18 \times \frac{20.0}{\chi}\right)\%$	$(\chi < 20.0 \text{ kPa } \{2000 \text{ mmH}_2O\})$
	Combined shift:	±0.33 %	$(\chi \ge 20.0 \text{ kPa } \{2000 \text{ mmH}_2O\})$
kgi/ciii }	(including zero and span shift)	$\pm \left(0.33 \times \frac{20.0}{\chi}\right) \%$	$(\chi < 20.0 \text{ kPa } \{2000 \text{ mmH}_2O\})$

Model JTD930A / 931A (material for wetted parts: 316 SST)

Accuracy *3	Linear output:	± 0.1%	$(\chi \ge 140 \text{ kPa } \{1.4 \text{ kgf/cm}^2\})$
		$\pm \left(0.025 + 0.075 \times \frac{140}{\chi}\right)\%$	$(\chi < 140 \text{ kPa } \{1.4 \text{ kgf/cm}^2\})$
	Square-root output:	When output is 50 to 100%:	
		When output is 7.1 to 50%:	linear output $\times \frac{50}{square-root\ output}\%$
		When output is less than 7.1	1%: dropout
Temperature characteristics (Shift from the	Zero shift:	$\pm \left(0.14 + 0.17 \times \frac{12.5}{\gamma}\right)\%$	$(\chi:kPa)$
set range)*3	Combined shift:	$\pm 0.44\%$	$(\chi \ge 12.5 \text{ kPa } \{1250 \text{ mmH}_2O\})$
Change of 30°C	(including zero and span shift)	$\pm \left(0.19 + 0.25 \times \frac{12.5}{\chi}\right)\%$	$(\chi < 12.5 \text{ kPa } \{1250 \text{ mmH}_2O\})$
Static pressure effect (Shift with respect to	Zero shift:	$\pm \left(0.18 \times \frac{700}{\chi}\right)\%$	(χ:kPa)
setting range)*3 Change of 7 MPa {70	Combined shift: (including zero and span shift)	$\pm \left(0.33 \times \frac{700}{\chi}\right) \%$	(x:kPa)
kgf/cm ² }			

Model JTD960A / 961A

Material for wetted parts: 316 SST

	Pures. 210 881		
Accuracy *3	Linear output:	$\pm 0.15\%$	$(\chi \ge 3.5 MPa \{35 kgf/cm^2\})$
		$\pm \left(0.1 + 0.05 \times \frac{3.5}{\chi}\right) \%$	$(\chi < 3.5 \text{ MPa } \{35 \text{ kgf/cm}^2\})$
	Square-root output:	When output is 50 to 100%:	same as linear output
		When output is 7.1 to 50%:	linear output $\times \frac{50}{square-root\ output}\%$
		When output is less than 7.1	%: dropout
Temperature characteristics (Shift from the	Zero shift:	$\pm \left(0.14 + 0.16 \times \frac{3.5}{\chi}\right) \%$	(χ.MPa)
set range)*3 Change of 55°C	Combined shift: (including zero and span shift)	± 0.44%	$(\chi \ge 3.5 MPa \{35 kgf/am^2\})$
	(morading zoro and span sinit)	$\pm \left(0.19 + 0.25 \times \frac{3.5}{\chi}\right) \%$	$(\chi < 3.5 MPa \{35 kgf/cm^2\})$
Static pressure effect (Shift with respect to	Zero shift:	$\pm \left(0.03 + 0.17 \times \frac{7}{\chi}\right) \%$	$(\chi > 7 MPa \{70 \text{ kgf/cm}^2\})$
setting range)*3	Combined shift:	± 0.4%	
Change of 7 MPa {70 kgf/cm ² }	(including zero and span shift)	$\pm \left(0.03 + 0.37 \times \frac{7}{\chi}\right) \%$	$(\chi \le 7 MPa \{70 kgf/cm^2\})$
			T: Ambient temperature (°C)

Model JTD920A

Material for wetted parts: ASTM B575 (Hastelloy C-276 equivalent), Tantalum

Accuracy *3	Linear output:	± 0.2%	$(\chi \ge 5.0 \text{ kPa } \{500 \text{ mmH}_2O\})$
		$\pm \left(0.125 + 0.075 \times \frac{5.0}{\chi}\right) \%$	$(\chi < 5.0 \text{ kPa } \{500 \text{ mmH}_2O\})$
	Square-root output:	When output is 50 to 100%:	same as linear output
		When output is 7.1 to 50%:	linear output $\times \frac{50}{square-root\ output}$ %
		When output is less than 7.1	%: dropout
Temperature characteristics (Shift from the	Zero shift:	$\pm \left(0.15 + 0.6 \times \frac{20.0}{\chi}\right) \%$	$(\chi . kPa)$
set range)*3 Change of 30°C (Range from -5 to 55°C)	Combined shift: (including zero and span shift)	$\pm \left(0.55 + 0.65 \times \frac{20.0}{\chi}\right) \%$	$(\chi . kPa)$
Static pressure effect	Zero shift:	±0.66%	$(\chi \ge 20.0 \text{ kPa } \{2000 \text{ mmH}_2O\})$
(Shift with respect to setting range)*3 Change of 7 MPa {70		$\pm \left(0.66 \times \frac{20.0}{\chi}\right) \%$	$(\chi < 20.0 \text{ kPa } \{2000 \text{ mmH}_2O\})$
kgf/cm ² }	Combined shift:	±1.0 %	$(\chi \ge 20.0 \text{ kPa } \{2000 \text{ mmH}_2O\})$
	(including zero and span shift)	$\pm \left(1.0 \times \frac{20.0}{\chi}\right) \%$	$(\chi < 20.0 \text{ kPa } \{2000 \text{ mmH}_2O\})$

- Note) *1: URV denotes the value for 100% (20 mA DC) output.
 - *2: LRV denotes value for 0% (4 mA DC) output
 - *3: Within a range of $URV \ge 0$ and $LRV \ge 0$
 - *4: Hastelloy C-276 equivalent material.

Model JTD930A

Material for wetted parts: ASTM B575 (Hastelloy C-276 equivalent), Tantalum, 316L SST

Accuracy *3	Linear output:	± 0.2%	(For $\gamma \ge 140 \text{ kPa } \{1.4 \text{ kgf/cm}^2\}$)					
·		λ ΄	(For $\chi < 140 \text{ kPa } \{1.4 \text{ kgf/cm}^2\}$)					
	Square-root output:	When output is 50 to 100%:	same as linear output					
		When output is 7.1 to 50%:	When output is 7.1 to 50%: linear output $\times \frac{50}{square-root\ output}$ %					
		When output is less than 7.1	1%: dropout					
Temperature characteristics (Shift from the	Zero shift:	$\pm \left(0.15 + 0.6 \times \frac{210}{\chi}\right) \%$	(x:kPa)					
set range)*3	Combined shift:	± 1.2%	(For $\chi \ge 210 \text{ kPa } \{2.1 \text{ kgf/cm}^2\}$)					
Change of 30°C (Range	(including zero and span shift)							
from -5 to 55°C)		$\pm \left(0.55 + 0.65 \times \frac{210}{\chi}\right) \%$	(For $\chi < 210 \text{ kPa } \{2.1 \text{ kgf/cm}^2\}$)					
Static pressure effect (Shift with respect to	Zero shift:	$\pm \left(0.03 + 0.295 \times \frac{700}{\gamma}\right) \%$	(χ:kPa)					
setting range)*3 Change of 7 MPa {70	Combined shift: (including zero and span shift)	$\pm \left(0.03 + 0.495 \times \frac{700}{\gamma}\right)\%$	(x:kPa)					
kgf/cm ² }		~						

Model JTD960A

Material for wetted parts: ASTM B575 (Hastelloy C-276 equivalent), Tantalum, 316L SST

	parts. Ab TWI D575 (IIas	terioy e-270 equivare	in), Tantalum, 510L 551
Accuracy *3	Linear output:	± 0.3%	(For $\chi \ge 3.5 MPa \{35 kgf/cm^2\}$)
		$\pm \left(0.25 + 0.05 \times \frac{3.5}{\chi}\right)$ %	(For $\chi < 3.5 MPa \{35 kgf/cm^2\}$)
	Square-root output:	When output is 50 to 100%	: same as linear output
		When output is 7.1 to 50%:	linear output $\times \frac{50}{square-root\ output}\%$
		When output is less than 7.	1%: dropout
Temperature characteristics (Shift from the	Zero shift:	$\pm \left(0.15 + 0.6 \times \frac{3.5}{\chi}\right) \%$	(x:kPa)
set range)*3 Change of 30°C (Range	Combined shift: (including zero and span shift)	± 1.2%	(For $\chi \ge 3.5 MPa \{35 kgf/cm^2\}$)
from -5 to 55°C)	(meruamg zero ana span smrt)	$\pm \left(0.55 + 0.65 \times \frac{3.5}{\chi}\right) \%$	(For $\chi < 3.5 MPa \{35 kgf/cm^2\}$)
Static pressure effect (Shift with respect to	Zero shift:	$\pm \left(0.03 + 0.295 \times \frac{7}{\gamma}\right)$ %	(χ:kPa)
setting range) ^{*3} Change of 7 MPa {70	Combined shift: (including zero and span shift)	± 0.525%	(For $\chi \ge 7 MPa \{70 \text{ kgf/cm}^2\}$)
kgf/cm ² }	($\pm \left(0.03 + 0.495 \times \frac{7}{\chi}\right)$ %	(For $\chi < 7 MPa \{70 kgf/cm^2\}$)

Note) *1: URV denotes the value for 100% (20 mA DC) output.

*2: LRV denotes value for 0% (4 mA DC) output

*3: Within a range of $URV \ge 0$ and $LRV \ge 0$

*4: Hastelloy C-276 equivalent material.

MODEL SELECTIONS

Model JTD910A - Lowest differential pressure - Regular service

Basic model no.	Selections							Opti	ions	1				Options 2 (Options 2: Refer to page 17)		
	-	I	II	III	IV	V	-	VI	VII	VIII	IX	X	-			

Model	Pressur	re range / style	Service (Fill fluid)	Process connection		
ITD010A	0.1 to 2 kPa (10 to 200 mmH ₂ O)	Lowest differential pressure	Regular service (Silicon oil)	Rc1/2, 1/2NPT, Rc1/4, NPT1/4		

		Basic model no. Selections Options 1													
	Measuring span	0.1 to 2.0 kPa (10 to 200 mmH ₂ O) JTD910A - -													
Sel	ections														
I	Output	4 to 20 mA (SFN protocol)													
		Digital output (DE protocol) *1 *2 3													
		Digital output (FOUNDATION Fieldbus protocol) *3 4													
		4 to 20 mA (HART protocol) 5													
II	Material	Meterbody cover Vent / drain plugs Wetted parts of center body													
		SCS14A 316 SST 316 SST E													
III	Fill fluid	Regular type (Silicon oil)													
IV	Process connection	Rc1/2, top connection A													
1 4	1 rocess connection	Rc1/2, bottom connection B													
		1/2NPT internal thread, top connection F													
		1/2NPT internal thread, bottom connection G													
		Rc1/4, top connection L													
		Rc1/4, bottom connection M													
		1/4NPT internal thread, top connection R													
		1/4NPT internal thread, bottom connection													
V	Bolt / nut	304 SST 2													
Op	tions 1	·													
VI	Electrical connec-	G1/2, watertight X													
	tion / explosion-	G1/2, TIIS Flameproof with 1 pc. of cable gland attached													
	proof	G1/2, TIIS Flameproof with 2 pcs. of cable gland attached 3													
		G1/2, TIIS Intrinsically safe *4													
		G1/2, KOSHA Flameproof P													
		1/2NPT, watertight A													
VII	Built-in indicating	None X													
	smart meter	0 to 100% linear scales													
		Engineering unit scales 2													
VIII	Finish	Standard X													
		Corrosion-resistant A													
		Corrosion-proof B													
		Corrosion-resistant (Silver coating)													
IX	Burnout feature	None X													
		Upper limit of output at abnormal condition *1 *4 U													
		Lower limit of output at abnormal condition *1 *4 D													
X	Mounting bracket	None	X												
		Carbon steel	1												
		304 SST	2												

- Note 1: Digital output (DE protocol) should be selected with upper/lowe direction of burn feature.
 - 2: Digital output (DE protocol) can not be combined with an external zero adjustment function.
 - 3: Code L1 must be selected for Options 2.
 - 4: This can not be combined with FOUNDATIONTM Fieldbus.

Model JTD920A / JTD930A / JTD960A - Regular service

Basic model no.		Selections							ions	1				Options 2 (Options 2	: Refer to page 17)
	-	I	II	III	IV	V	-	VI	VII	VIII	IX	X	-		

Model	Pressure range / style	Service (Fill fluid)	Process connection
JTD920A	0.75 to 100 kPa (75 to 10160 mmH ₂ O) Medium differenti	al pressure Regular service	Rc1/2, 1/2NPT, Rc1/4,
JTD930A	35 to 700 kPa (0.35 to 7 kgf/cm²) High differential p	ressure (Silicon oil)	NPT1/4
JTD960A	0.25 to 14 MPa (2.5 to 140 kgf/cm ²) Super high differe	ntial pressure	1111174

JT	D960A 0.25 to 14 M	IPa (2.5 to 140 kgf/cm ²)	Super high c	lifferential pressure	e	(
			Basic	c model no.	Sele	ction	ıs				Opti	ions	-1		
				-						_					
	Measuring span	0.75 to 100 kPa (75 to 10	160 mmH ₂ O)	JTD920A											
	<i>U</i> 1	35 to 700 kPa (0.35 to 7		JTD930A											Ì
		0.25 to 14 MPa (2.5 to 1		JTD960A											
		0.23 to 14 IVII a (2.3 to 1	40 kgi/ciii)	31D700/1											
Т	Output	4 to 20 mA (SFN protoc	(10		1										
1	Output	Digital output (DE proto	ool) *1 *2		3										Ì
		Digital output (FOUNDAT			4										
		4 to 20 mA (HART prot			5										
II	Material	` .	Vent / drain	Wetted parts of	-										Ì
11	TVIATOTIAI	Meterbody cover	plugs	center body											Ì
		SCS14A	316 SST	316 SST		Е									
		SCS14A	316 SST	ASTM B575 *5	, +	F									
	*6	SCS14A	316 SST	Tantalum	+	Н									
	*6		316 SST	316L SST	\dashv	K									
	*6, *7, *8, *9		PVC	Tantalum	\dashv	P									
III	Fill fluid	Regular type (Silicon oi		14114141411		-	1								Ì
	Process connection	Rc1/2, top connection	-)					A							Ì
		Rc1/2, bottom connection	on					В							Ì
		1/2NPT internal thread,						F							
		1/2NPT internal thread,		ion				G							Ì
		Rc1/4, top connection						L							Ì
		Rc1/4, bottom connection	on					M							Ì
		1/4NPT internal thread,						R							Ì
		1/4NPT internal thread,		tion				S							Ì
V	Bolt / nut	Carbon steel							1						Ì
		304 SST							2						Ì
		630 SST							3						Ì
	ions 1									-					Ì
VI	Electrical connec-	G1/2, watertight									X				Ì
	tion / explosion-	G1/2, TIIS Flameproof									2				
	proof	G1/2, TIIS Flameproof		able gland attached	d						3				Ì
		G1/2, TIIS Intrinsically									K				
		G1/2, KOSHA Flamepro	oof								P				Ì
		1/2NPT, watertight									Α				
VII	Built-in indicating	None										X			Ì
	smart meter	0 to 100% linear scales										1			
		Engineering unit scales										2			Ì
VIII	Finish	Standard											X		
		Corrosion-resistant											Α		Ì
		Corrosion-proof											В		
		Corrosion-resistant (Silv	er coating)										D		
IX	Burnout feature	None		to the short										X	
		Upper limit of output at												U	
	1	Lower limit of output at	abnormal cond	ition *1 *4										D	Į,
X	Mounting bracket	None													X
		Carbon steel													1
		304 SST													2

- Note 1: Digital output (DE protocol) should be selected with upper/lowe direction of burn feature.
 - 2: Digital output (DE protocol) can not be combined with an external zero adjustment function.
 - 3: Code L1 must be selected for Options 2.
 - 4: This can not be combined with FOUNDATIONTM Fieldbus.
 - 5 ASTM B575: Hastelloy C-276 equivalent.
 - 6: The pitch is 82mm. To change the pitch to 54mm (standard pitch), should be selected adapter flange ("A1" of Options 2).
 - 7: JTD960A is not available for cover material PVC.
 - 8: When meterbody cover material is PVC, Option 2 should be selected "V" as bolt/nut 304 SST.
 - 9: When meterbody cover material is PVC, manifold valve (model MVG) and/or Integral orifice (model KEE) can not be combined with.

Model JTD921A / JTD931A / JTD961A - Regular service

Basic model no.		Select	ions				Opti	ions	1				Options 2 (Options 2: Refer to page 1	17)
	-	I I	III III	IV	V	-	VI	VII	VIII	IX	X	-		

Model	Pressure rang	e / style	Service (Fill fluid)	Process connection
JTD921A	2.5 to 100 kPa (250 to 10160 mmH ₂ O)	High static pressure for medium differential pressure		
JTD931A	35 to 700 kPa (0.35 to 7 kgf/cm ²)	High static pressure for high differential pressure	Regular service (Silicon oil)	Rc1/2, 1/2NPT, Rc1/4, NPT1/4
JTD961A	0.25 to 14 MPa (2.5 to 140 kgf/cm²)	High static pressure for super high differential pressure		

			Basi	c model no.	Sele	ection	ıs			O	ptio	ns 1			
					-					-					
	Measuring span	0.75 to 100 kPa (75 to 101 35 to 700 kPa (0.35 to 7 0.25 to 14 MPa (2.5 to 14	kgf/cm ²)	JTD921A JTD931A JTD961A											
I	Output Material	4 to 20 mA (SFN protocol Digital output (DE protocol Digital output (FOUNDAT 4 to 20 mA (HART protocol Meterbody cover	col) *1 *2 ION Fieldbus p ocol) Vent / drain plugs	Wetted parts											
		SCS14A	316 SST	316 SST		Е									
	Fill fluid	Regular type (Silicon oil)				1								
IV	Process connection	Rc1/2 *10 1/2NPT *10 Rc1/4 *10 1/4NPT *10						1 2 3 4							
V	Bolt / nut	Carbon steel 304 SST 630 SST							1 2 3						
Opt	ions 1	l								-					
	Electrical connection / explosion-proof	G1/2, watertight G1/2, TIIS Flameproof w G1/2, TIIS Flameproof w G1/2, TIIS Intrinsically s G1/2, KOSHA Flamepro 1/2NPT, watertight	vith 2 pcs. of c afe *4	ble gland attach	ed hed						X 2 3 K P A				
VII	Built-in indicating	None									<u> </u>	X			
	smart meter	0 to 100% linear scales Engineering unit scales										1 2			
VIII	Finish	Standard Corrosion-resistant Corrosion-proof Corrosion-resistant (Silve	er coating)										X A B D		
	Burnout feature	None Upper limit of output at a Lower limit of output at a	abnormal cond	ition *1 *4 lition *1 *4										X U D	
X	Mounting bracket	None Carbon steel 304 SST													X 1 2

- Note 1: Digital output (DE protocol) should be selected with upper/lowe direction of burn feature.
 - 2: Digital output (DE protocol) can not be combined with an external zero adjustment function.
 - 3: Code L1 must be selected for Options 2.
 - 4: This can not be combined with FOUNDATIONTM Fieldbus.
 - 10: Code P1 or P2 must be selected for Options 2.

Model JTD910A - Oxygen service

Basic model no.		Sele	ction	18				Opt	ions	1				Options 2 (Options 2: Refer to page	17)
	-	I	II	III	IV	V	-	VI	VII	VIII	IX	X	-		

Model	Pressure rang	e / style	Service (Fill fluid)	Process connection
JTD910A	0.1 to 2.0 kPa (10 to 200 mmH ₂ O)	Lowest differential pressure	Oxygen service (Fluorine oil)	Rc1/2, 1/2NPT, Rc1/4, NPT1/4

		Basic model no. Selections Options	-1		
	Measuring span	0.1 to 2.0 kPa (10 to 200 mmH ₂ O) JTD910A			
I	Output	4 to 20 mA (SFN protocol)			
		Digital output (DE protocol) *1 *2 3			
		Digital output (FOUNDATION Fieldbus protocol) *3 4			
		4 to 20 mA (HART protocol) 5			
II	Material	Meterbody cover Vent/drain Wetted parts of			
		plugs centerbody			
		SCS14A 316 SST E			
III	Fill fluid	For oxygen service (Fluorine oil)			
IV	Process connection	Rc1/2, top connection A			
		Rc1/2, bottom connection B			
		1/2NPT internal thread, top connection F			
		1/2NPT internal thread, bottom connection G			
		Rc1/4, top connection L			
		Rc1/4, bottom connection M			
		1/4NPT internal thread, top connection R			
		1/4NPT internal thread, bottom connection			
V	Bolt / nut	304 SST 2			
Opt	ions 1	-			
VI	Electrical connec-	G1/2, watertight X			
	tion / explosion-	G1/2, TIIS Flameproof with 1 pc. of cable gland attached 2			
	proof	G1/2, TIIS Flameproof with 2 pcs. of cable gland attached 3			
		G1/2, TIIS Intrinsically safe *4 K			
		G1/2, KOSHA Flameproof P			
		1/2NPT, watertight A			
VII	Built-in indicating	None	ζ.		
	smart meter	0 to 100% linear scales	1		
		Engineering unit scales 2	2		
VIII	Finish	Standard	Х		
		Corrosion-resistant	Α		
		Corrosion-proof	В		
		Corrosion-resistant (Silver coating)	Г)	
IX	Burnout feature	None		X	
		Upper limit of output at abnormal condition *1 *4		U	
		Lower limit of output at abnormal condition *1*4		D	
X	Mounting bracket	None			X
	-	Carbon steel			1
		304 SST			2
	1	1-1-22			

Note1: Digital output (DE protocol) should be selected with upper/lowe direction of burn feature.

- 2: Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3: Code L1 must be selected for Options 2.
- *4:* This can not be combined with FOUNDATIONTM Fieldbus.

Model JTD920A / JTD930A / JTD960A - Oxygen service

Basic model no.		Selection	ns				Optio	ns 1	_				Options 2 (Options 2	: Refer to page 1	(7)
	-	I II	III	IV	V	-	VI	VIIV	/III I	X	X	-			

Model	Pressure range	e / style	Service (Fill fluid)	Process connection
JTD920A	0.75 to 100 kPa (75 to 10160 mmH ₂ O)	Medium differential pressure	0	D = 1/2 1/2NDT D = 1/4
JTD930A	35 to 700 kPa (0.35 to 7 kgf/cm ²)	High differential pressure	Oxygen service (Fluorine oil)	Rc1/2, 1/2NPT, Rc1/4, NPT1/4
JTD960A	0.25 to 14 MPa (2.5 to 140 kgf/cm ²)	Super high differential pressure	(1 Idoline on)	1111/4

			Bas	ic model no.	Sel	ectio	ns				Opt	ions	s-1		
				-						-					
	Measuring span	0.75 to 100 kPa (75 to 10	160 mmH ₂ O)	JTD920A											
		35 to 700 kPa (0.35 to 7	kgf/cm ²)	JTD930A											
		0.25 to 14 MPa (2.5 to 1		JTD960A											
		0.23 to 11 till a (2.3 to 1	10 kgi/cm)	01270011											
T	Output	4 to 20 mA (SFN protoc	01)		1										
1	Output	Digital output (DE proto	col) *1 *2		3										
		Digital output (FOUNDAT	TON Fieldbus r	rotocol) *3	4										
		4 to 20 mA (HART prot	ocol)	<i>Jiotocoi)</i> 3	5										
II	Material	Meterbody cover	Vent/drain	Wetted parts of	-										
11	Machai	Wickerbody cover	plugs	terbody	CCII-										
		SCS14A	316 SST	316 SST		Е									
		SCS14A SCS14A	316 SST	ASTM B575	*5	F									
	*6	SCS14A SCS14A	316 SST	Tantalum		Н									
	*6	SCS14A SCS14A	316 SST 316 SST	316L SST		K									
	*6, *7, *8, *9	PVC	PVC	Tantalum		K P									
TIT	Fill fluid			Tantatum		Р	1								
		For oxygen service (Flue	orine oii)				2								
1 V	Process connection	Rc1/2, top connection						A							
		Rc1/2, bottom connection						В							
		1/2NPT internal thread,						F							
		1/2NPT internal thread,	bottom connec	tion				G							
		Rc1/4, top connection						L							
		Rc1/4, bottom connection						M							
		1/4NPT internal thread,						R							
		1/4NPT internal thread,		tion				S							
Į,	5.1.7	Δ Probe bottom connect	ion					W							
V	Bolt / nut	Carbon steel							l						
		304 SST							2						
		630 SST							3						
	ions 1	61/6								-					
	Electrical connec-	G1/2, watertight									X				
	tion / explosion-	G1/2, TIIS Flameproof									2				
	proof	G1/2, TIIS Flameproof		able gland attach	ned						3				
		G1/2, TIIS Intrinsically									K				
		G1/2, KOSHA Flamepro	100								P				
T / T T	D 11	1/2NPT, watertight									Α	37			
VII	Built-in indicating	None										X			
	smart meter	0 to 100% linear scales										1			
	77' ' 1	Engineering unit scales										2			
VIII	Finish	Standard											X		
		Corrosion-resistant											A		
		Corrosion-proof											В		
	7	Corrosion-resistant (Silv	rer coating)										D		
lΧ	Burnout feature	None		1										X	
		Upper limit of output at												U	
		Lower limit of output at	abnormal cond	dition *1 *4										D	
X	Mounting bracket	None													X
		Carbon steel													1
		304 SST													2

- Note 1: Digital output (DE protocol) should be selected with upper/lowe direction of burn feature.
 - Digital output (DE protocol) can not be combined with an external zero adjustment function. 2:
 - 3: Code L1 must be selected for Options 2.
 - This can not be combined with FOUNDATIONTM Fieldbus.
 - ASTM B575: Hastelloy C-276 equivalent

 - The pitch is 82 mm. To change the pitch to 54 mm (standard pitch), should be selected adapter flange ("A1" of Option 2). Model JTD960A is not available for meterbody cover material PVC.

 When meterbody cover material is PVC, Option 2 should be selected "V" as bolt/nut 304 SST.

 When meterbody cover material is PVC, manifold valve (model MVG) and/or integral orifice (model KEE) can not be combined with.

Model JTD921A / JTD931A / JTD961A - Oxygen service

Basic model no.		Sele	ction	1S				Opt	ions	1				Options 2 (Options 2:	Refer to page 17)
	-	I	II	III	IV	V	-	VI	VII	VIII	IX	X	-		

Model	Pressure rang	v	Service (Fill fluid)	Process connection
JTD921A	2.5 to 100 kPa (250 to 10160 mmH ₂ O)	High static pressure for medium differential pressure		
JTD931A	35 to 700 kPa (0.35 to 7 kgf/cm²)	High static pressure for high differential pressure	Oxygen service (Fluorine oil)	Rc1/2, 1/2NPT, Rc1/4, NPT1/4
JTD961A	0.25 to 14 MPa (2.5 to 140 kgf/cm ²)	High static pressure for super high differential pressure		

					I									
			Basi	c model no.	Sele	ection	S		_	Opt	ions	-1		
					-				-					
	Measuring span	0.75 to 100 kPa (75 to 1016	0 mmH ₂ O)	JTD921A										
		35 to 700 kPa (0.35 to 7 k	gf/cm ²)	JTD931A										
		0.25 to 14 MPa (2.5 to 140) kgf/cm ²)	JTD961A										
I	Output	4 to 20 mA (SFN protocol	.)		1	-								
	•	Digital output (DE protoco	ol) *1 *2		3									
		Digital output (FOUNDATIO	ON Fieldbus p	protocol) *3	4									
		4 to 20 mA (HART protoc	ol)	·	5									
II	Material	Meterbody cover	Vent / drain	Wetted parts of o	enter									
		,	plugs	body										
		SCS14	316 SST	316 SST		Е								
	Fill fluid	For oxygen service (Fluor	ine oil)				2							
IV	Process connection	Rc1/2 *10					1							
		1/2NPT *10					2							
		Rc1/4 *10					3							
		1/4NPT *10					4							
V	Bolt / nut	Carbon steel						1						
		304 SST						2						
		630 SST						3						
Opt	ions 1								-					
VI	Electrical connec-	G1/2, watertight								X				
	tion / explosion-	G1/2, TIIS Flameproof wi	th 1 pc. of ca	ible gland attach	ied					2				
	proof	G1/2, TIIS Flameproof wi	th 2 pcs. of c	able gland attac	hed					3				
		G1/2, TIIS Intrinsically sa	fe *4							K				
		G1/2, KOSHA Flameproo	Ť							P				
X / / X	D 11: 11: 11: 11:	1/2NPT, watertight								A	37			
VII	Built-in indicating	None									X			
	smart meter	0 to 100% linear scales									1			
37111	P''.1.	Engineering unit scales									2	37		
VIII	Finish	Standard Corrosion-resistant										X		
												A B		
		Corrosion-proof	· acatina)									D		
IV	Burnout feature	Corrosion-resistant (Silver	coating)									ע	v	
IΛ	Burnout reature	Upper limit of output at ab	normal cond	lition *1 *1									X U	
		Lower limit of output at at											D	
v	Mounting bracket	None	Jilotiliai Colic	1111011 1 14									ע	X
Λ	iviounting bracket	Carbon steel												1
		304 SST												2
		JU4 BB I												

Note1: Digital output (DE protocol) should be selected with upper/lowe direction of burn feature.

- 2: Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3: Code L1 must be selected for Options 2.
- *4:* This can not be combined with FOUNDATIONTM Fieldbus.
- 10: Code P1 or P2 must be selected for Options 2.

Model JTD920A / JTD930A / JTD960A - Chlorine service

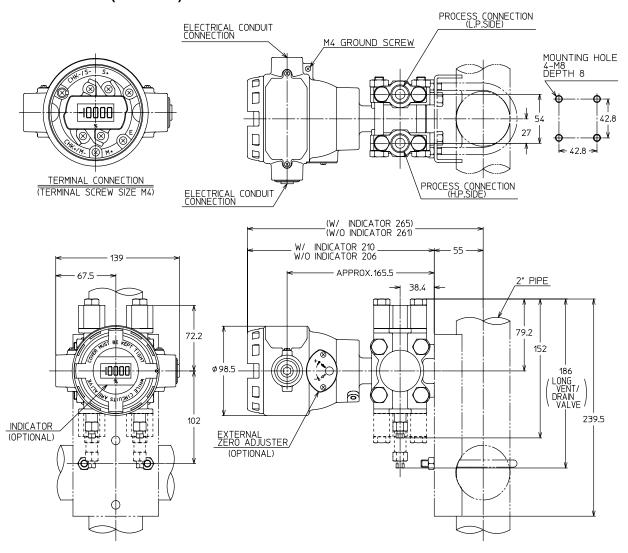
Basic model no.		Sele	ection	ns				Opti	ions	1				Options 2 (Options 2	Refer to page	17)
	-	I	II	III	IV	V	-	VI	VII	VIII	IX	X	-			

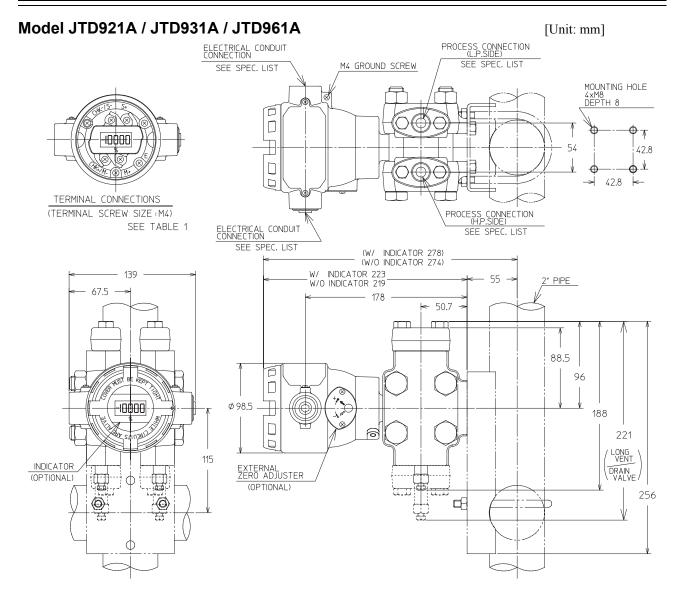
Model	Pressure rang	Service (Fill fluid)	Process connection	
JTD920A	0.75 to 100 kPa (75 to 10160 mmH ₂ O)	Medium differential pressure	Chlorine service	Rc1/2, 1/2NPT, Rc1/4,
JTD930A	35 to 700 kPa (0.35 to 7 kgf/cm ²)	High differential pressure	(Fluorine oil)	NPT1/4
JTD960A	0.25 to 14 MPa (2.5 to 140 kgf/cm ²)	Super high differential pressure	(1 luorine on)	1111/1

Measuring span				Basi	c model no.	Sele	ections			Oj	ption	ns 1			
Toutput						-				-					
Toutput															
Output		Measuring span	0.75 to 100 kPa (75 to 10	160 mmH ₂ O)	JTD920A										
The first connection			35 to 700 kPa (0.35 to 7	kgf/cm ²)	JTD930A										
Toutput			0.25 to 14 MPa (2.5 to 1	40 kgf/cm ²)	JTD960A										
Digital output (DE protocol) *1 *2 3 3 4 4 to 20 mA (HART protocol) 5 5				υ,											
Digital output (DE protocol) *1 *2 3 3 4 4 to 20 mA (HART protocol) 5 5	I	Output	4 to 20 mA (SFN protoc	ol)		1									
Digital output (FOUNDATION Fieldbus protocol) *3		1	Digital output (DE proto	ocol) *1 *2		3									
Naterial			Digital output (FOUNDAT	TION Fieldbus p	rotocol) *3	4									i
Material					,	5									
None Plug Centerbody Plug P	II	Material			Wetted parts	of									i
Note			•	plugs	centerbod	y									i
III Fill fluid For chlorine service (Fluorine oil) 5 No.		*6	SCS14A				Н								i
III Fill fluid For chlorine service (Fluorine oil) 5 No.		*6, 7, 8, 9	PVC *3	PVC	Tantalum		P								
None	III	Fill fluid	For chlorine service (Flu	orine oil)	1		5								
Rc1/2, bottom connection				,				A							
1/2NPT internal thread, top connection				n				В							i
Tight Tigh								F							i
Rc1/4, top connection			1/2NPT internal thread,	bottom connec	tion			G							i
Rc1/4, bottom connection								L							i
Tight Tig				n				M							i
T/4NPT internal thread, bottom connection			1/4NPT internal thread,	top connection				R							i
$\begin{array}{ c c c c }\hline V & Bolt / nut & Carbon steel & 1 \\ \hline 304 SST & 2 \\ \hline 630 SST & 3 \\ \hline \hline \hline \textbf{Options 1} & - \\ \hline \hline VI & Electrical connection / explosion-proof & G1/2, watertight & X \\ \hline 107/2, TIIS Flameproof with 1 pc. of cable gland attached & 2 \\ \hline 107/2, TIIS Flameproof with 2 pcs. of cable gland attached & 3 \\ \hline 107/2, TIIS Intrinsically safe *4 & K \\ \hline 107/2, KOSHA Flameproof & P \\ \hline 1/2NPT, watertight & A \\ \hline \hline$			1/4NPT internal thread,	bottom connec	tion			S							i
304 SST			Δ Probe bottom connect	ion				W							ı
None Standard Standard Corrosion-resistant (Silver coating) Options 1 Standard Corrosion-resistant (Silver coating) Options 1 Standard Standard Corrosion-resistant (Silver coating) Options 1 Standard Standard Options 2 Options 1 Options 1 Options 1 Options 2 Options 2 Options 3 Options 4 Options 6 Options 6 Options 6 Options 6 Options 6 Options 6 Options 7 Options	V	Bolt / nut	Carbon steel						1						i
$ \begin{array}{ c c c c } \hline \textbf{Options 1} & & & & & & & & \\ \hline \textbf{VI} & Electrical connection / explosion-proof & & & & & & & \\ \hline tion / explosion-proof & & & & & & & \\ \hline \textbf{G1/2}, TIIS Flameproof with 1 pc. of cable gland attached} & & & & & & \\ \hline \textbf{G1/2}, TIIS Flameproof with 2 pcs. of cable gland attached} & & & & & & \\ \hline \textbf{G1/2}, TIIS Intrinsically safe *4 & & & & & \\ \hline \textbf{G1/2}, KOSHA Flameproof} & & & & & & \\ \hline \textbf{I2NPT}, watertight & & & & & \\ \hline \textbf{VII} & Built-in indicating smart meter & & & & & \\ \hline \textbf{None} & & & & & & \\ \hline \textbf{Standard} & & & & & & \\ \hline \textbf{VIII} & Finish & & & & \\ \hline \textbf{Standard} & & & & & & \\ \hline \textbf{Corrosion-resistant} & & & & & \\ \hline \textbf{Corrosion-proof} & & & & & & \\ \hline \textbf{Corrosion-resistant} & & & \\ \hline \textbf{Corrosion-resistant} & & & & \\ \hline \textbf{Corrosion-resistant} & &$			304 SST						2						i
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			630 SST						3						i
$ \begin{array}{c} \text{tion / explosion-} \\ \text{proof} \end{array} \begin{array}{c} \hline{\text{G1/2, TIIS Flameproof with 1 pc. of cable gland attached}} \\ \hline{\text{G1/2, TIIS Flameproof with 2 pcs. of cable gland attached}} \\ \hline{\text{G1/2, TIIS Intrinsically safe *4}} \\ \hline{\text{G1/2, KOSHA Flameproof}} \\ \hline{\text{I/2NPT, watertight}} \end{array} \begin{array}{c} X \\ \hline{\text{VII Built-in indicating smart meter}} \end{array} \begin{array}{c} \text{None} \\ \hline{\text{O to 100\% linear scales}} \\ \hline{\text{Engineering unit scales}} \end{array} \begin{array}{c} X \\ \hline{\text{UII Finish}} \end{array} \begin{array}{c} \text{Standard} \\ \hline{\text{Corrosion-resistant}} \\ \hline{\text{Corrosion-resistant (Silver coating)}} \end{array} \begin{array}{c} X \\ \hline{\text{D to 2000 for coating}} \end{array} \begin{array}{c} X \\ \hline{\text{D to 2000 for coating}} \end{array} $	Opt	ions 1								-					i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI	Electrical connec-	G1/2, watertight								X				i
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		tion / explosion-	G1/2, TIIS Flameproof	with 1 pc. of ca	ble gland attach	ed					2				i
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		proof	G1/2, TIIS Flameproof	with 2 pcs. of c	able gland attac	hed					3				i
I/2NPT, watertight A VII Built-in indicating smart meter None		-									K				i
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			G1/2, KOSHA Flamepro	oof							P				
smart meter 0 to 100% linear scales 1 Engineering unit scales 2 VIII Finish Standard X Corrosion-resistant A Corrosion-proof B Corrosion-resistant (Silver coating) D			1/2NPT, watertight								Α				i
Engineering unit scales VIII Finish Standard Corrosion-resistant Corrosion-proof Corrosion-resistant (Silver coating) Engineering unit scales X A Corrosion-resistant D	VII	Built-in indicating										X			
VIII Finish Standard X Corrosion-resistant A Corrosion-proof B Corrosion-resistant (Silver coating) D		smart meter										1			
Corrosion-resistant A Corrosion-proof B Corrosion-resistant (Silver coating)												2			
Corrosion-proof B Corrosion-resistant (Silver coating) D	VIII	Finish													i
Corrosion-resistant (Silver coating)															ı
															i
IX Rurnout feature None			,	rer coating)									D		
	IX	Burnout feature	None											X	
Upper limit of output at abnormal condition *1 *4 U														-	
Lower limit of output at abnormal condition *1 *4 D				abnormal conc	lition *1 *4									D	
	X	Mounting bracket													X
Carbon steel 1															
304 SST 2			304 SST												2

- Note1: Digital output (DE protocol) should be selected with upper/lower direction of burn feature.
 - 2: Digital output (DE protocol) can not be combined with an external zero adjustment function.
 - 3: Code L1 must be selected for Options 2.
 - *4:* This can not be combined with FOUNDATIONTM Fieldbus.
 - 6: The pitch is 82 mm. To change the pitch to 54 mm (standard pitch), should be selected adapter flange ("A1" of Option 2).
 - 7: Model JTD960A is not available for meterbody cover material PVC.
 - 8: When meterbody cover material is PVC, Option 2 should be selected "V" as bolt/nut 304 SST.
 - 9: When meterbody cover material is PVC, manifold valve (model MVG) and/or integral orifice (model KEE) can not be combined with.

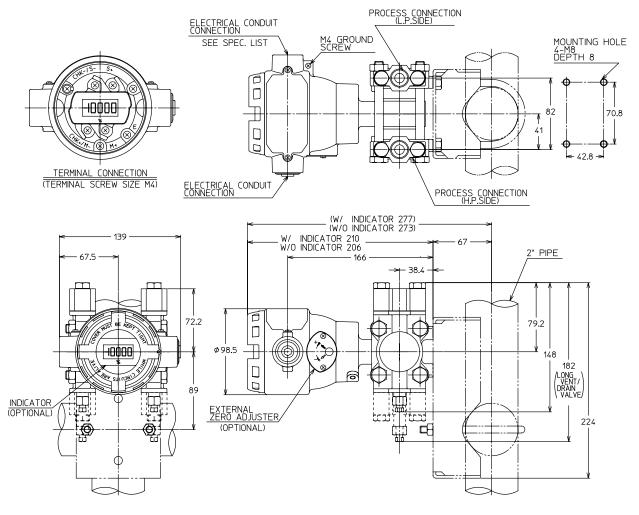
Options 2

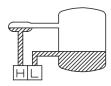

1	Tar
XX	No options
A1	Adapter flange for corrosion-resistant application (316L SST or Tantalum for the wetted parts of centerbody)
A2	External Zero adjustment *2 *4
A4	Lightning arrestor *4
A5	Long vent/drain plugs
В7	For mounting a high load resistance smart meter *4 *11
C1	Color: Red (Munsell 5R4/13)
C2	Color: Yellow (Munsell 2.5Y8/16))
C3	Color: Blue (Munsell 7.5BG7/2)
C7	Process connection; reverse
D1	Water free finish (including oil free finish)
E6	Water free finish (including oil free finish) High Grade
D2	Oil free finish *12
G1	One elbow (left)
G2	One elbow (right)
G3	2 elbows
J8	Special burn-out feature (3.2 mA) *4 *13
K9	Output saturation point changeable
L1	Fieldbus communication stack BASIC class
P1	Process connection: Top
P2	Process connection: Bottom
T1	Test report
T2	Material certificate *14
T5	Strength calculation sheet *15
T6	Withstand pressure and Airtight test *16
Т8	Traceability certificate
U2	Non-SI unit conformance
	1


Note 2: Digital output (DE protocol) can not be combined with an External zero adjustment function.

- *4:* This can not be combined with FOUNDATIONTM Fieldbus.
- 11: This can not be combined with TIIS intrisically safe, code K in Options 1.
- 12: When the fill fluid is for oxygen or chlorine service, there is no need to select.
- 13: "Lower limit of output at abnormal condition" code D must be selected for Options 1 "V", Burnout feature.
- 14: Available only for material of wetted part.
- 15: Specify design pressure and design temperature.
- 16: Specify required test pressures (up to the max. working pressure).

DIMENSIONS [Unit: mm]


Model JTD910A /JTD920A /JTD930A (316 SST, ASTM B575 (Hastelloy C-276 equivalent))
Model JTD960A (316 SST)



Model JTD920A/930A (Tantalum, 316L SST)

Model JTD960A (ASTM B575 (Hastelloy C-276 equivalent), Tantalum, 316L SST) [Unit mm]

Note) The suppression >adjustment Span/2
A high pressure and a low pressure side of the process piping connection become it contrary to figure.
Please follow the figure, if measuring the level with liquid seal.

Please read the "Terms and Conditions" from the following URL before ordering or use:

http://www.azbil.com/products/bi/order.html

Specifications are subject to change without notice.

Azbil Corporation

Advanced Automation Company

1-12-2 Kawana, Fujisawa Kanagawa 251-8522 Japan URL: http://www.azbil.com/

1st edition: July 1996 11th edition: Apr. 2013